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Accurate calculation of three-body depletion interactions
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We compute three-body depletion interactions in a hard-sphere mixture within the framework of de
functional theory and by considering the infinite dilution limit of the functional. The results look very accu
and show three-body interactions much smaller than the pair depletion ones, revealing that these are
influenced by correlations and have a decay length similar to the two-body depletion potential. The res
compared with the predictions of the Asakura-Oosawa model for the triplet interactions.
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I. INTRODUCTION

Asymmetric mixtures composed of species of highly d
ferent particle size have wide physical interest, covering
study of colloidal suspensions and macromolecular solutio
In these systems the component of large size, a colloid
macromolecule, is surrounded by a fluid composed of sm
particles layered around it. The effective interaction exer
between two or more large particles, is in general given
both the bare interaction acting between them, e.g., of e
trostatic nature, and the forces that may be of entropic or
alone, called depletion interactions, arising from the va
tion of the free energy of the surrounding fluid with th
configuration of the larger particles@1#. To lowest order, the
depletion effect can be described in terms of the Asaku
Oosawa~AO! theory@2,3# where the fluid is taken as an ide
gas and the effective potential is computed as the variatio
the volume available to the fluid with the colloids config
ration. According to the simple AO theory, the depleti
potential is a monotonic function of the colloids separatio

Depletion interactions arise from the presence of the fl
surrounding large colloids, the larger the difference in s
between the two components, the stronger the resulting
fective interaction. Moreover, the presence of excluded v
ume effects and internal correlations of the surrounding flu
modulates the effective interaction between the large p
ticles in a nontrivial way@4#.

Depletion forces are, in principle, many body in natu
@5#. For example, when three particles approach each ot
the overall depletion interaction is not simply given by t
sum of two-body interactions, as seen by computing trip
forces within the AO correlation-free picture. The magnitu
of such triplet depletion forces is of interest to understand
nature of solvent-mediated interactions and in design
good two-body parametrization of the effective potential b
tween colloids@5–8#. As for the two-body case, the sum o
the interaction due to AO interactions for a given thre
particle configuration, and the fluid internal correlations,
expected to give rise to a modulated shape in the tri
depletion forces.

In the present paper we are interested in hard sph
~HS! and in computing the triplet depletion interaction e
erted between three large hard spheres surrounded by a
vent composed of small hard spheres. To this purpose
use density-functional theory~DFT! as the theoretical frame
001/64~1!/011403~9!/$20.00 64 0114
e
s.
a
ll
d
y
c-
in
-

-

of

.
d
e
f-

l-
,
r-

er,

t

e
g
-

-

t

es

ol-
e

work to provide accurate numerical results@9#. A previous
calculation has already been presented elsewhere@10# where
DFT was employed in the form of the Rosenfeld’s ‘‘fund
mental measure’’ functional@11#. By minimizing the free
energy on a three-dimensional~3D! computational grid at
different configurations of the three large HS, the trip
depletion forces were computed by a brute force approach
general, the numerical implementation used to minimize
Rosenfeld functional in a fully three-dimensional geome
suffers by a serious drawback due to the large amount of
points needed to accurately solve the computational prob
@12#. In fact, the rapid spatial variation of the fluid densi
for a large size ratio between the two components~such as
5:1! and the intrinsically singular nature of the functiona
require a number of grid points that is beyond the act
CPU and memory capabilities. In the previous work, in ord
to facilitate the calculation, a locally adaptive grid was us
to increase the numerical resolution in proximity of the lar
hard spheres, where the density varies more rapidly@10#. The
approach has provided a qualitative, although rough, ob
vation of triplet depletion forces but, when looking at th
size of the numerical error bars as compared to the tri
forces, the results were somewhat inconclusive.

In the present paper, we employ an approach differ
from the previous attempt, by adopting the recent theoret
advances due to Rothet al. @8#. Following these authors, we
compute the pair and triplet depletion forces by using a
fined form of the potential distribution theorem, the so-call
infinite dilution limit, in order to reduce the problem of ca
culating the free energy of three particles to the case of o
two particles embedded in the solvent of small HS. By e
ploiting the cylindrical symmetry of two large HS in th
solvent fluid, the problem is reduced from a thre
dimensional to a two-dimensional one. Similarly, Rothet al.
previously computed pair depletion interactions in compa
son with Monte Carlo results@13#, showing that the method
is viable and accurate in DFT. By using the formulation
these authors, we are able to obtain very accurate deple
curves and provide the first quantitative observation of trip
depletion forces.

II. DFT FOR HARD SPHERES AND THE INFINITE
DILUTION LIMIT

We considerNo large spheres of diametersb generating
an external field for a mixture of small spheres of diame
©2001 The American Physical Society03-1
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ss and density profilers(r ), and large spheres of diamet
sb and density profilerb(r ). The size ratio between the tw
components isa5sb /ss . Given a configuration$Ri%(1< i
<No) of the large spheres, the two densities depend p
metrically on$Ri% and satisfy the constraints

rs~r !50, for ur2Ri u,~sb1ss!/2

rb~r !50, for ur2Ri u,sb . ~1!

In the grand canonical ensemble, the equilibrium profi
rn(r ),n5s,b, minimize the grand potential

V~@rs~r !,rb~r !#;$Ri%!5F @rs~r !,rb~r !#1 (
n5s,b

E rn~r !

3@Vn
ext~r $Ri%!2mn

0#dr , ~2!

whereVn
ext(r$Ri%) is the external potential,mn

0 the reservoir
chemical potential, andF @rs(r ),rb(r )# the Helmholtz free
energy, customarily split into ideal and excess parts

F @rs~r !,rb~r !#5Fid@rs~r !,rb~r !#1Fex@rs~r !,rb~r !#,
~3!

where

Fid@rs~r !,rb~r !#5kBT (
n5s,b

E rn~r !$ log@Ln
3rn~r !#21%dr .

~4!

Ln being the de Broglie thermal wavelength of speciesn.
To date, the most accurate free-energy functional for h

spheres is the Rosenfeld’s ‘‘fundamental measure’’ fu
tional @14,11#. Rosenfeld functional for a homogeneous flu
turns into the Percus-Yevick compressibility equation
state@15#, with a wide range of validity versus the packin
fraction. Among several different forms of the function
proposed in the literature@16#, we have chosen the one th
correctly provides freezing of the one-component ha
sphere system, with the proper treatment of the ze
dimensional limit of the functional. Recently, Roth an
Dietrich have successfully tested the reliability of the Ros
feld functional for binary mixtures close to a planar ha
wall @18#, while we have tested the functional for terna
mixtures of HS in confined geometries@17,19# with Monte
Carlo results.

The Rosenfeld functional for HS has the form

Fex@rs~r !,rb~r !#5kBTE F„na~r !…dr

5kBTE H 2n0~r !log@12n3~r !#

1
n1~r !n2~r !2nV1~r !•nV2~r !

12n3~r !

1
@n2~r !~12j~r !2!#3

24p@12n3~r !#2 J dr , ~5!
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with the following weighted densities defined as

n0~r !5(
n

1

4psn
2E rn~r 8!d~ ur2r 8u2sn!dr 8

5(
n

1

4psn
2

n2,n~r !,

n1~r !5(
n

1

4psn
E rn~r 8!d~ ur2r 8u2sn!dr 8

5(
n

1

4psn
n2,n~r !,

n2~r !5(
n
E rn~r 8!d~ ur2r 8u2sn!dr 85(

n
n2,n~r !,

n3~r !5(
n
E rn~r 8!u~ ur2r 8u2sn!dr 85(

n
n3,n~r !,

nV1~r !5(
n

1

4psn
¹ rE rn~r 8!u~ ur2r 8u2sn!dr 8

5¹ r(
n

1

4psn
n3,n~r !,

nV2~r !5(
n

¹ rE rn~r 8!u~ ur2r 8u2sn!dr 85¹ r(
n

n3,n~r !,

~6!

where we have introduced the partial weighted densities

n2,n~r !5E rn~r 8!d~ ur2r 8u2sn!dr 8,

dr 8n3,n~r !5E rn~r 8!u~ ur2r 8u2sn!, ~7!

and the functionj(r )5unV2u/n2(r ).
In general, the weighted densities can be rewritten

terms of scalar and vectorial weight functionsva,n , via the
equation

na,n5E rn~r 8!va,n~r2r 8!dr 8. ~8!

By functional differentiation of the total free energy, th
equilibrium densities are found to satisfy the following se
consistent equation

rn~r !5rn
0exp@2bVn

ext~r !1cn
(1)~r !#, ~9!

wherern
05Ln

23exp(bmn) is the reservoir bulk density and
3-2
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ACCURATE CALCULATION OF THREE-BODY . . . PHYSICAL REVIEW E64 011403
cn
(1)~r !52b

dF ex

drn~r !
~10!

is the one-body direct pair-correlation function.
The depletion potential between two large HS embed

in a sea of small HS, is defined as the difference in gra
potential between two configurations in which the pair is
distanceR12 and at infinity, respectively:

W2~R12!5V„@rs~r !,rb~r !#;R12…

2V„@rs~r !,rb~r !#;R12→`…. ~11!

Roth et al. have shown that computing the depletion pote
tial can be greatly simplified by writing the depletion pote
tial in terms of the one-body direct correlation function
the large spheres

W2~R12!5cb
(1)~R12→`!2cb

(1)~R12!. ~12!

The previous expression can be applied once an explicit f
of the excess free energy is provided, as for the Rosen
free energy functional. In this case,

cb
(1)~r !52E (

a
Aa~r 8!vb,a~r2r 8!dr 8, ~13!

where we have defined

Aa~r !5
]F

]na
~r !. ~14!

If we set the density of the large HS to zero, i.e., in t
infinite dilution limit of this species being unperturbed, th
weighted densities take the form:

na~r !5E rs~r 8!ws,a~r2r 8!dr 8. ~15!

Equation ~13! provides the so-called direct limit route t
computeW(r ). In fact, given the small spheres density th
minimizes the Rosenfeld functional, the weighted densi
na and the functionAa can be evaluated to yield the pa
depletion potential~12!.

Alternatively, a numerical procedure can be applied
take the infinite dilution limit. This is obtained by conside
ing the Rosenfeld free energy as a functional of both
small and large HS densities. The large HS density is ta
small enough to leave the small HS density unperturbed,
the depletion potential is obtained as

W~R12!52kBT lim
rb→0

ln
rb~R12!

rb~R12→`!
. ~16!

The two distinct procedures allow to compute the pair dep
tion potential by considering the external potential of a sin
large HS surrounded by a sea of small particles, eventu
together with an infinitesimal density of the large sphere
the numerical limit is used. In both cases, the computatio
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simplified by exploiting the symmetry of the external pote
tial, in fact reducing the problem to a one-dimensional c
culation.

An analogous procedure can be applied to compute
triplet depletion potential of three large HS embedded in
sea of small HS. The triplet depletion potential is equal to
difference in grand potential between a configuration
which three particles have overlapping excluded volume
a configuration when the three particles have separation
large that they do not see each other~i.e., the correlations
induced by each sphere on the surrounding fluid are mutu
independent!:

W3~R1 ,R2 ,R3!5V~R1 ,R2 ,R3!2V~R1 ,R2→`,R3→`!

2V~R1→`,R2 ,R3→`!

2V~R1→`,R2→`,R3! ~17!

where we have dropped the functional dependence on de
ties for simplicity. The three-body correction to the depleti
interaction is therefore taken to be

DW3~R1 ,R2 ,R3!5W3~R1 ,R2 ,R3!2W2~R12!2W2~R13!

2W2~R23!, ~18!

whereW2 for different two-body configurations is compute
via independent calculations.

We remark that the infinite dilution limit is applicable t
compute triplet depletion interactions via both compu
simulations and experiments. Given the pair depletion in
action, an accurate expression for the free-energy functio
is needed to construct the triplet interactions.

We now evaluate the triplet contribution to the depleti
potential within the AO model that, as we will show, aris
from the triply excluded volume of three spheres surround
by a perfect gas. Let us consider a system made of th
particles, embedded in a fluid at constant densityrs

0 and
contained in a region of volumeVT . Each sphere determine
a region precluded to density of volumeV5p(sb1ss)

3/6.
Now, let us consider the volume doubly precluded to t
density and formed by a pairi , j of overlapping spheresVi j
and the volume triply precluded to the density and formed
a triplet i , j ,k of particles,Vi jk . A simple geometrical argu-
ment shows that, given three overlapping spheres, the
ume available to the surrounding fluid is:

V123
av 5VT23V1V121V131V232V123. ~19!

Similarly, Vi j
av5VT22V1Vi j is the available volume due to

two overlapping spheres.
The AO pair depletion potential is given by

W2
AO52kBTrs

0@Vi j
av2~VT22V!#

52kBTrs
0@VT22V1Vi j 2VT12V#

52kBTrs
0Vi j , ~20!
3-3
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where we have dropped the dependence on the sphere
tions for clarity. Analogously, the three-body depletion p
tential is

W3
AO52kBTrs

0@V123
av 2~VT23V!#

52kBTrs
0@VT23V1V121V131V232V1232VT13V#

52kBTrs
0@V121V131V232V123#, ~21!

where the pair and triplet depletion potentials are both ne
tive and do not depend on the volume of the singly exclud
regions. The corresponding three-body correction is deri
from Eq. ~18!, yielding:

DW3
AO5kBTrs

0V123, ~22!

which is a positive quantity, depending on the triply e
cluded volume only, and monotonic as the three sphe
move away from each other.

Before concluding this section, we remark thatc(1)(r )
needs to be computed by either using the direct limit of
Rosenfeld functional or the numerical limit, analogously
Eq. ~16!, and in both cases the Rosenfeld functional need
be minimized given a configuration of two large HS. T
cylindrical symmetry can be fully exploited to increase t
accuracy of the calculation with respect to a brute force
proach where, in the presence of three large HS, the ca
lation involves a fully three dimensional minimization of th
functional. Moreover, instead of obtaining few points of t
depletion potential, the method allows us to study the wh
three-body potential surface for a given two spheres sep
tion.

We finally note that Eq.~13! proves computationally
more convenient than the numerical limit route, since for
former, only the one-component form of the functional nee
to be minimized. Moreover, the performances are also
ferent, since the numerical limit route implies an extra co
putational cost due to the use of the large sphere density
further iterations in the free-energy minimization are
quired. Therefore, we will present numerical results obtain
via the direct limit of the functional to compute pair an
triplet depletion interactions.

III. NUMERICAL IMPLEMENTATION

To solve the Rosenfeld functional for a pair of large H
the optimal choice is to use cylindrical coordinates. As d
cussed in the previous section, we consider here only
density field of the small spheresrs(r ), and first look at the
scalar weight functionsv2,s andv3,s . The relative weighted
densities are expressed in cylindrical coordinates as

na,s~r !5E dr 8rs~r 8!va,s~ ur2r 8u!

5E
2`

`

dz8E
0

`

dr82pr 8rs~r 8,z8!ga,s~r ,r 8,z2z8!,

~23!
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where

ga,s~r ,r 8,z2z8!5
1

2pE0

2p

df va,s@ f ~r ,r 8,z2z8!#,

~24!

and

f ~r ,r 8,z2z8!5ur2r 8u2
ss

2

5@r 21r 8222rr 8cosf

1~z2z8!2#1/22
ss

2
. ~25!

If we transform the angular integral from the variablef into
the variablef, we have

df5
4~ f 1ss/2!

$4r 2r 822@c22~ f 1ss/2!2#2%1/2
d f ,

cosf5
@c22~ f 1ss/2!2#2

2rr 8
, ~26!

where we have introduced the functionc(r ,r 8,z2z8) being

c25r 21r 821~z2z8!2. ~27!

We note that in expression~26! for the differentialdf a
factor 2 needs to be introduced given the two possible s
tions for cosf in the range (0<f<2p).

The explicit calculation ofn2(r ,z) then yields

n2~r ,z!5E dr8E dz8E d f

3
4r 8~ f 1ss/2!d~ f !

$4r 2r 822@c22~ f 1ss/2!2#2%1/2
rs~r 8,z8!

5E
max(r 2ss/2,0)

r 1ss/2

dr8H E
e1

e2
dz8

1E
2e2

2e1
dz8J 2r 8ssrs~r 8,z8!

@4r 2r 822~c22ss
2/4!2#1/2

, ~28!

where the extrema of integration are defined as

e15max~@ss
2/42~r 81r !2#1/21z,z!,

e25min~@ss
2/42~r 82r !2#1/21z,z1ss/2!, ~29!

and provided thate1<e2.
The explicit calculation ofn3(r ,z) proceeds similarly by

applying the same transformation in the angular variab
The resulting expression is
3-4
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n3~r ,z!5E dr8E dz8E d f
4r 8~ f 1ss/2!u~ f !

$4r 2r 822@c22~ f 1ss/2!2#2%1/2
rs~r 8,z8!

5E dr8E dz8E
max„2ss/2,2[ss

2/42(r 81r )22(z2z8)2] 1/2
…

min„0,2[ss
2/42(r 82r )22(z2z8)2] 1/2

…

d f
4r 8~ f 1ss/2!

$4r 2r 822@c22~ f 1ss/2!2#2%1/2
rs~r 8,z8!

5E
max(r 2ss/2,0)

r 1ss/2

dr8H E
0

e3
dz81E

e4

e5
dz8J H p22 tan21F c22ss

2/4

@4r 2r 822~c22ss
2/4!2#1/2G J 2prs~r 8,z8!, ~30!
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where the extrema of integration are

e35max$@ss
2/42~r 1r 8!2#1/2,0%,

e45min$ss/21z,@ss
2/42~r 2r 8!2#1/21z%,

e55max$@ss
2/42~r 1r 8!2#1/21z,z%. ~31!

Similar lengthy expressions can be obtained for the ve
weighted density. However, a more convenient form for n
merical purposes is obtained by using the relationnV2(r )
5¹ rn3(r ), so that the vector weighted densities can be co
puted by numerical differentiation of the scalar weight
densityn3(r ).

Due to the dependence of the weighted densities onz
2z8) only, the integrals in thez direction are easily com
puted in Fourier space by using the convolution theore
therefore, with a performance that scales linearly with
number of grid points in the axial direction. Vice versa,
the radial direction, the integrals are not convolutions a
more. These need to be computed with a cost that scales
the number of grid points per hard-sphere times the num
of grid points in the radial direction.

A particular care is needed in computing the radial in
grals. In fact, spurious numerical correlations arise due to
discrete computational grid that is unable to account for
fast variation of the weight functions close to the origin. F
instance, this can be observed by direct inspection
v2,s(r ,r 8), the weight function with the strongest spati
variation, versusr 8. The singular behavior is particularly re
evant asr→0.

To alleviate this problem, we have reformulated the mi
mization procedure by considering only quantities as diff
ences from the corresponding bulk values, which can
computed analytically, their corresponding values given
the Percus-Yevick equation of state. We define the follow
quantities:

Dna~r !5E „rs~r 8!2rs
0
…vn,s~r2r 8!dr 8,

DAa~r !5Aa~r !2Aa
05

]F

]na
~r !2Aa

0 , ~32!

wherena(r )5Dna(r )1na
0 , andna

0 is the bulk value of the
weighted density, known analytically. Similarly,Aa(r ) is de-
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fined by Eq.~14!, and its bulk valueAa
0 is known analyti-

cally. Therefore, the self-consistent Eq.~9! can be solved by
computing at each iteration step

cs
(1)~r !52(

a
E DAa~r 8!va,s~r 82r !dr 8. ~33!

The advantage of this formulation relies in that, since
quantitiesDrs , Dna , and DAa are zero in the bulk, their
spatial variations are reduced with respect to their abso
values. Moreover, wherever a region precluded to densit
present in the computational domain, such as inside a la
hard sphere, the local values ofna and Aa are taken to be
equal to their bulk values.

IV. RESULTS

As a preliminary benchmark of the described method,
have computed the depletion potential of a pair of large h

FIG. 1. The three-body correction to the potential,DW3 /r0kBT,
when a third sphere is moved a heightDh away from two spheres a
contact for size ratioa52.5, 3.75, and 5. The full lines are from
the AO model and the symbols are the numerical DFT results in
infinite dilution limit ~with a packing fraction of small spheres o
p/30 000).
3-5
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spheres for three different values of the packing fraction
the surrounding fluid,h5rsss

3p/6, and for a size ratioa
55 in cylindrical coordinates~2D! and via the infinite dilu-
tion limit in spherical coordinates~1D! ~see Fig. 7 of Ref.
@20#!. A similar test has been previously made@8# for the size
ratio a510, by comparing the Rosenfeld functional resu
versus molecular dynamics data@13#. We have obtained
nearly perfect agreement between the 1D and 2D
proaches, proving the quality of the performances of
Rosenfeld functional via a self-consistent test. At the sa
time, the numerical procedure in cylindrical coordinat
looks accurate, lending confidence on the solution of
three-body problem via the infinite dilution route.

As a different preliminary test, we have considered
three-body correction to the depletion potentialDW3 ob-
tained via the infinite dilution route and the Asakura-Oosa
prediction, the latter becoming exact in the limit of a sm
packing fraction of the surrounding fluid. The AO depletio
potential is obtained by using Eq.~22! and where the overlap
volume of three large HS has been computed via a nume
integration procedure.

Figure 1 showsDW3 for three spheres in isosceles geo
etry, with two spheres forming the base at contact and
third sphere displaced vertically at heightDh. The calcula-
tion is repeated for three different values ofh. In all cases,
good agreement is found between the two approaches
particular for an intermediate value of the size ratio.
simple but tedious geometrical argument shows that
larger size ratio, the AO three-body depletion potential dro
to zero when the vertical separation exceeds@21#

Dhmax5
1

2
@A2sssb1ss

22~12A3!sb1ss#. ~34!

Moreover, as the size ratio is increased, the interaction
comes more short ranged and disappears continuously w
a.6.46.

The DFT approach allows us to inspect directly the lo
behavior of the density, as illustrated in Fig. 2, where

FIG. 2. Contour plot of the density of small spheres around t
large spheres. The separation of the large spheres is 10 in un
the small sphere radiusr s . Thez coordinate is along the line of th
centers of the large spheres and ther coordinate is perpendicular t
this. The density values are measured in dimensionless unit
r(r )/rs , wherers is the bulk small hard-sphere density of 0.07
The size ratio of the small spheres to large spheres isa55, and the
packing fraction ish5p/10. The cell size is 60r s in thez direction
~along the line of the centers of the large spheres! and 20r s along
the r direction in cylindrical coordinates. The grid used is made
18003600 points.
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report the contour plot of the density around a pair of sphe
at contact. The density exhibits maxima close to the HS b
ders, and in particular close to the contact point between
two spheres. The contour plot refers to a size ratioa55 and
a packing fractionh5p/10. The density map has been com
puted for a cylindrical simulation cell size of 30ss in the
axial direction, and 10ss in the radial direction. The com
putational grid is composed of 18003600 points in the two
directions, respectively.

The numerical accuracy of the spherical versus cylindri
grid methods has been compared in Fig. 3, where we re

o
of

of

f

FIG. 3. Comparison of density profiles of small spheres arou
a single large sphere from the 1D and 2D approaches for a sy
with a55 andh5p/10. R is the distance from the center of th
sphere inr s units. The 1D spherically symmetric calculation us
327 radial grid points per small sphere radius and the 2D cylin
cally symmetric code uses 30 grid points per small sphere radi

FIG. 4. The two-body depletion potentialW2 from both the 1D
and 2D calculations, fora55 andh5p/10. The inset graph show
twice the difference for these potentials. The 1D spherically sy
metric calculation uses 327 radial grid points per small sphere
dius and the 2D cylindrically symmetric calculation uses 30 g
points per small sphere radius.
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the density profile of small spheres around a single la
sphere, obtained via the 1D and 2D methods. For this t
the size ratio isa55 and the packing fraction ish5p/10. In
the 1D calculation, we used 327 grid points per small sph
radius, whereas for the 2D calculation we used 30 grid po
per small sphere radius. The contact values of the density
found to be 3.92rs and 3.96rs for the 1D and 2D methods
respectively. The discrepancy of around 1% will reflect
the depletion forces, since these are surface integrals o
density of the small spheres at contact with the large sph
@22,5#. Overall, the two profiles show excellent matching
all distances from the large sphere, so that with the cho
grid resolution, we can proceed in computing three-bo
depletion potentials.

The numerical error present in our calculations has b
estimated by considering the pair depletion potentialW2 ob-
tained with the 2D and 1D distinct calculations, and sho
in Fig. 4. The difference between the two approaches ca

FIG. 5. Contour plot of the three-body contributionDW3 felt by
a third large hard sphere near two other spheres that are sepa
by R12510 r s ~upper panel!, 12 r s ~middle panel!, and 14r s ~lower
panel!. The packing fraction of the small spheres ifh5p/10. Out-
side the region, there is no observable three-body potential and
white areas indicate the regions inaccessible to the third h
sphere. The gray scale indicated is inkBT units. r is the radial
coordinate, andz is the distance along the axis, both inr s units.
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considered as a combination of the numerical error due
different grid resolutions and the usage of the approxim
Rosenfeld functional. The error is visible in the inset a
exhibits limited oscillations smaller than 0.05kBT and with-
out a definite trend versus the HS spacing; this error can
considered to be valid also for the three-body depletion
tentials reported in the following of the section.

The three-body potentials are computed once the free
ergy is minimized for the two spheres configuration. In F
5, we report the contour plots of the quantityDW3 obtained
for three different separations of two spheres, forh5p/10
and a55. The plots show that the three-body potential
highly localized around the center line (z50) and is at least
one order of magnitude smaller than the typical two-bo
potentials at the same packing fraction. Also, the three-b
contribution rapidly disappears when the particle separa
becomes larger than 7ss . An interesting feature of the con
tour plots is the circular band structure observed when
large spheres are close to contact.

The behavior ofDW3 is next extracted from the data
considering a three-body isosceles geometry and by u
Eq. ~18! with R15(2R12/2,0,0), R25(R12/2,0,0) andR3
5(0,0,z), for different values ofz. Figure 6 illustratesDW3
for a55 and at three different packing fractions. The inte
esting feature of the data is that the three-body potentia
highly modulated by correlations as compared to the A
result, also shown in Fig. 6 forh5p/10. The AO curve is
rather short ranged and is an order of magnitude smaller
the three-body contribution, in contrast to the two-body ca
where the AO potential has magnitude comparable to
true depletion potential.

The AO three-body contact potential is further analyz

ted

he
rd

FIG. 6. Plots of the three-body contribution to the depleti
potential felt by a third sphere a vertical distanceDh above the
contact point with the bottom two spheres. The size ratio isa55
and the packing fraction ish5p/10 ~solid curve!, p/15 ~dashed
curve!, andp/30 ~dotted curve!. The dotted-dashed curve refers
the AO result forh5p/10.
3-7
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by considering the case of three spheres in contact (R12
5R135R235sb), and by plotting the ratioDW3/3W2, as in
Fig. 7, where the Rosenfeld and the AO results are comp
versus the size ratio for a packing fraction of the surround
fluid of h5p/30 000. The AO and low-density limit of the
Rosenfeld functional agree, as expected, and the curve
cays quickly at large size ratio and exhibit larger contrib
tions of the three-body terms for smaller size ratios.

FIG. 7. Plot of the ratio of the three-body potentialDW3 to the
pairwise contribution (3W2) when three spheres are at contact v
sus the size ratioa, for a packing fraction ofh5p/30 000. Full line
is for the AO model symbols are the DFT results.

FIG. 8. Plot of the three-body contribution to the depletion p
tential felt by a third sphere in contact with two spheres separa
by a distanceR12 in r s units, for a55 and for packing fraction of
h5p/10 ~circles!, p/20 ~squares!, andp/30 ~diamonds!. The AO
result for h5p/10 is also reported for comparison~dot-dashed
line!.
01140
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Another interesting configuration to analyze the thre
body contact forces is when the third sphere is in cont
with the bottom spheres, the latter being at variable sep
tion R12. As Fig. 8 shows, in this case, the correlation
oscillations are relatively large and rather different from t
AO estimate.

Finally, we have studied the three-body contribution
depletion versus the size ratio, in the same isosceles ge
etry where the base spheres are in contact and the
sphere is displaced vertically. Figure 9 illustrates the thr
body potential forh5p/10 and h5p/30. At the higher

-

-
d

FIG. 9. Plots of the three-body contribution to the depleti
potential felt by a third sphere a vertical distanceDh above the
contact point with the bottom two spheres, which are in conta
The size ratio of the large to small spheres is given in the leg
and AO indicated the Asakura-Oosawa for that size ratio. The
graph is for a packing fraction of the small spheres ofp/10, and the
bottom graph is for a packing fractionp/30.
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packing fraction ofp/10, the magnitude of the three-bod
potential seems to be relatively unchanged by the size ra
However, since the strength of the pair interaction is
proximately proportional to the size ratio~i.e., increases with
large sphere radius!, the three-body potential becomes re
tively less important as the size ratio is increased. The
depletion potential seems to have an effect at size ratia
52.5, where it appears to push up the value of the thr
body potential. At the lower packing fractionh5p/30, the
potentials are greatly reduced, but again, the AO poten
seems to have an effect fora52.5. This time, however, the
effect is quite visible, with the potential initially following
the same gradient as the AO potential.

V. CONCLUSIONS

We have presented a numerical method for compu
three-body interactions in hard sphere mixtures within
framework of density-functional theory. The computation
effort is greatly reduced by considering the so-called infin
dilution limit of the functional, since the original three
dimensional problem is reconducted to a two-dimensio
one. Therefore, by minimizing the free energy in cylindric
coordinates we have obtained a whole family of deplet
curves versus the size ratio and the packing fraction.

The obtained results have shown that the three-body
teractions are much smaller than the pair depletion ones
are mostly correlation-driven, exhibiting both attractive a
repulsive behavior. Since depletion forces can be written
surface integrals of the small sphere density at contact w
A

s.
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the large hard spheres@22,10#, the presence of the third
sphere induces a surplus or deficit of density at contact,
therefore a modulation of the local kinetic pressure due
the surrounding fluid@5#.

Moreover, the triplet contribution to depletion rapidly d
cays to zero as a third sphere moves away from two sph
with a decay length similar to the corresponding two-bo
depletion potential. This effect is evident at small packi
fraction and the decay is slightly slower as the packing fr
tion approaches one. We have compared our results with
Asakura-Oosawa correlation-free model, and observed t
although the AO model captures the magnitude of the trip
interactions, only at small packing fraction and small s
ratio can the AO picture can be taken as a good estimate
the three-body correction to the depletion interactions.
nally, our results suggest that a similar behavior has to
expected for higher order contributions to depletion inter
tions. Since thenth-order AO contribution to depletion po
tential depends on the overlapping excluded volume on
large spheres, thenth-order depletion potential will presum
ably be smaller by one order of magnitude than the term
lower order.
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